Abstract

AbstractIt is well known that silver deposition avoids bacterial growth and inhibits the natural process of attachment of connective tissue to biocompatible materials in vivo. We have completed a five year investigation of the precise spatial control of cell growth on glassy polymeric carbon implanted with silver using ion beam techniques, and the persistence of the inhibitory effect on cell growth. Long term inhibition of cell growth on GPC is a desirable improvement on current cardiac implants and other biocompatible materials placed in the blood stream. We have used implanted silver ions near the surface of GPC to completely inhibit cell attachment and adhesion. Cells attach and strongly adhere to areas close to the silver implanted surfaces. Patterned ion implantation permits precise control of tissue growth on GPC and other biocompatible substrates. Cell growth limited to micrometric patterns on a substrate may be useful for in vitro studies of associated biological processes in an otherwise identical environment. The patterned inhibition of cell attachment persists for periods of time significant relative to typical implant lifetimes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.