Abstract

The dyes Methyl Calcein Blue, Arsenazo I, and Xylenol Orange, and the metal salts CuCl(2) and NiCl(2) were used to generate colorimetric sensors for peptides. Two different approaches were followed: (1) Sensors based on dynamic combinatorial libraries of metal-dye complexes were created by mixing dyes with metal salts in one pot. The optical response of these libraries was analyzed by measuring the spectral changes of the mixtures upon addition of the peptide analytes at six selected wavelengths. (2) Sensor arrays were created from six different metal-dye combinations. The six individual sensors were analyzed at one wavelength, and the resulting data was used as the input for a multivariate analysis. Both types of sensors were evaluated for their ability to differentiate 13 different di- and tripeptides. The sensors based on dynamic combinatorial libraries gave in most cases better results than the sensor array. Furthermore it was found that libraries of intermediate complexity perform best as sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.