Abstract
While wet pattern transferring of polymers is faster than dry processing, it can lead to excessive undercut that will erode and distort features in patterned sacrificial regions during micro electro mechanical systems (MEMSs) fabrication. Dry etching processes based on O2, CF4 and N2 chemistry reduce undercutting of features to around 2 µm, but the resulting sidewall profiles of the patterned polymer islands are generally unsuitable for subsequent conformal deposition of thin films for surface micromachined MEMS fabrication. This paper presents a dry etching process for Prolift-100-16 polymer sacrificial layers, that employs a combination of a hard mask and a subsidiary sacrificial layer, that overcomes the limitations of undercut control and conformal deposition of physical vapour deposition techniques. The dry etching process is optimized to reduce the feature undercut to as low as 1 µm, while also producing sidewall profiles suitable for subsequent conformal deposition of thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.