Abstract

In this paper, a new variant of flower pollination algorithm (FPA), namely, enhanced flower pollination algorithm (EFPA), has been proposed for the pattern synthesis of nonuniform linear antenna arrays (LAA). The proposed algorithm uses the concept of Cauchy mutation in global pollination and enhanced local search to improve the exploration and exploitation tendencies of FPA. It also uses dynamic switching to control the rate of exploration and exploitation. The algorithm is tested on standard benchmark problems and has been compared statistically with state of the art to prove its worthiness. LAA design is a tricky and difficult electromagnetic problem. Hence to check the efficacy of the proposed algorithm it has been used for synthesis of four different LAA with different sizes. Experimental results show that EFPA algorithm provides enhanced performance in terms of side lobe suppression and null control compared to FPA and other popular algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.