Abstract
By 2050, one in six people globally will be 65 or older. Confusion and delirium are significant complications after burn injury, especially in the elderly population. The etiology is still unknown, however complications may be driven by pro-inflammatory activation of astrocytes within the hippocampus (HPC) after burn injury. Reduced levels of phosphorylated cyclic-AMP response binding element (pCREB), caused by elevated systemic pro-inflammatory cytokines, could lead to cognitive decline and memory impairment.To examine the effects of remote injury on neuroinflammation in advanced age, young and aged mice were subjected to a 15 % total body surface area scald burn or sham injury, and euthanized after 24 h. Expression of ccl2 and tnfa were measured by qPCR in the whole brain and HPC. Astrocyte activation was measured by immunofluorescence within the HPC. pCREB was measured by immunohistochemistry in the dentate gyrus.We saw an 80-fold increase in ccl2 and a 30-fold elevation in tnfa after injury in the whole brain of aged mice compared to young groups and aged sham mice (p < 0.05 and p < 0.05, respectively). Additionally, there was a 30-fold increase in ccl2 within isolated HPC of aged injured mice when compared to sham injured animals (p < 0.05). When investigating specific HPC regions, immunofluorescence staining showed a >20 % rise in glial fibrillary acidic protein (GFAP) positive astrocytes within the cornu ammonis 3 (CA3) of aged injured mice when compared to all other groups (p < 0.05). Lastly, we observed a >20 % decrease in pCREB staining by immunohistochemistry in the dentate gyrus of aged mice compared to young regardless of injury (p < 0.05).These novel data suggest that remote injury in aged, but not young, mice is associated with neuroinflammation and astrocyte activation within the HPC. These factors, paired with an age related reduction in pCREB, could help explain the increased cognitive decline seen in burn patients of advanced age. To our knowledge, we are the first group to examine the impact of advanced age combined with burn injury on inflammation and astrocyte activation within the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.