Abstract
When a chemical reaction is carried out on a catalytic ribbon, the spatial average temperature of which is kept constant by electrical heating, spatiotemporal temperature patterns form when the uniform steady state is unstable at the set temperature. Numerical simulations reveal periodic and aperiodic patterns of moving pulses, ‘‘breathing’’ pulses, or stationary and oscillatory fronts. The transitions between some of these patterns are intricate and proceed via global bifurcations. Bifurcation maps of parameter regions leading to specific patterns are used to gain insight into pattern formation and organization of these parameter regions. The relations among the dynamics of the uncontrolled system, the ribbon length, and the selected pattern are discussed. Similar patterns are expected to evolve in other reaction–diffusion systems subject to control of space-averaged properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.