Abstract

An associative memory based on Hopfield-type neural network, called Quaternionic Hopfield Associative Memory with Dual Connection (QHAMDC), is presented and analyzed in this paper. The state of a neuron, input, output, and connection weights are encoded by quaternion, a class of hypercomplex number systems with non-commutativity for its multiplications. In QHAMDC, calculation for an internal state of a neuron is conducted by two types of multiplications for neuron’s output and connection weight. This makes robustness of the proposed associative memory for retrieval of patterns. The experimental results show that the performances of retrieving patterns by QHAMDC are superior to those by the previous QHAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.