Abstract

A compact antenna based on low-profile radiator pairs with high pattern reconfiguration diversity is proposed in this letter. The antenna consists of four hybrid radiator pairs and a reconfigurable feeding network. By switching the <sc xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on/off</small> states of four positive-intrinsic-negative (PIN) diodes, which are integrated into the reconfigurable network, the activation states of the four radiator pairs can be separately controlled. Each pair employs one low-profile electric radiator (monopole) and one low-profile magnetic radiator for stable directional radiation and structural compactness. As a result, the radiation beam can be electrically and directionally scanned in the horizontal plane ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ϕ-</i> plane). Eight different radiation modes can be obtained within an overlapped bandwidth. A prototype is designed, fabricated, and tested. Good impedance matching and stable directional radiation patterns are achieved over the entire operating band from 3.4 to 3.70 GHz in the measurement. The fabricated antenna features a compact size of 0.46 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">λ<sub>g</sub></i> × 0.46 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">λ<sub>g</sub></i> × 0.13 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">λg</i> ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">λ<sub>g</sub></i> represents the guided wavelength at 3.5 GHz). The proposed antenna is well-suitable for space-limited Sub-6 GHz smart and intelligent applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.