Abstract
Transformer oil tests such as breakdown voltage, resistivity, dielectric dissipation factor, water content, 2-furfuraldehyde, acidity, and different dissolved gasses have been adopted in utility companies for evaluating the conditions of transformer insulation. Over the past 20years, various pattern recognition techniques have been applied for power transformer insulation diagnosis using oil tests results (oil characteristics). This paper investigates a variety of state-of-the-art pattern recognition algorithms for transformer insulation diagnosis. To verify the applicability and generalization capability of different pattern recognition algorithms, this paper implements 15 representative algorithms and conducts extensive case studies on eight oil characteristics datasets collected from different utility companies. A statistical performance (in terms of classification accuracy) comparison among different pattern recognition algorithms for transformer insulation diagnosis using oil characteristics is also conducted in the paper. Copyright (c) 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Transactions on Electrical Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.