Abstract

A back-propagation network was trained to recognize high voltage spike-wave spindle (HVS) patterns in the rat, a rodent model of human petit mal epilepsy. The spontaneously occurring HVSs were examined in 137 rats of the Fisher 344 and Brown Norway strains and their F1, F2 and backcross hybrids. Neocortical EEG and movement of the rat were recorded for 12 night hours in each animal and analog data were filtered (low cut: 1 Hz; high cut: 50 Hz) and sampled at 100 Hz with 12 bit precision. A training data set was generated by manually marking durations of HVS epochs in 16 representative animals selected from each group. Training data were presented to back-propagation networks with variable numbers of input, hidden and output cells. The performance of different types of networks was first examined with the training samples and then the best configuration was tested on novel sets of the EEG data. FFT transformation of EEG significantly improved the pattern recognition ability of the network. With the most effective configuration (16 input; 19 hidden; 1 output cells) the summed squared error dropped by 80% as compared with that of the initial random weights. When testing the network with new patterns the manual and automatic evaluations were compared quantitatively. HVSs which were detected properly by the network reached 93–99% of the manually marked HVS patterns, while falsely detected events (non-HVS, artifacts) varied between 18% and 40%. These findings demonstrate the utility of back-propagation networks in automatic recognition of EEG patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.