Abstract

This paper presents a novel ranking method to select spectral entropy (SE) features that discriminate alcoholic and control visual event-related potentials (ERP’S) in gamma sub-band (30–55 Hz) derived from a 64-channel electroencephalogram (EEG) recording. The ranking is based on a t test statistic that rejects the null hypothesis that the group means of SE values in alcoholics and controls are identical. The SE features with high ranks are indicative of maximal separation between their group means. Various sizes of top ranked feature subsets are evaluated by applying principal component analysis (PCA) and k-nearest neighbor (k-NN) classification. Even though ranking does not influence the performance of classifier significantly with the selection of all 61 active channels, the classification efficiency is directly proportional to the number of principal components (pc). The effect of ranking and PCA on classification is predominantly observed with reduced feature subsets of (N = 25, 15) top ranked features. Results indicate that for N = 25, proposed ranking method improves the k-NN classification accuracy from 91 to 93.87% as the number of pcs increases from 5 to 25. With same number of pcs, the k-NN classifier responds with accuracies of 84.42–91.54% with non-ranked features. Similarly for N = 15 and number of pcs varying from 5 to 15, ranking enhances k-NN detection accuracies from 88.9 to 93.08% as compared to 86.75–91.96% without ranking. This shows that the detection accuracy is increased by 6.5 and 2.8%, respectively, for N = 25, whereas it enhances by 2.2 and 1%, respectively, for N = 15 in comparison with non-ranked features. In the proposed t test ranking method for feature selection, the pcs of only top ranked feature candidates take part in classification process and hence provide better generalization.

Highlights

  • Alcoholism is a chronic disease that is addictive and progressive in nature

  • The Spectral entropy (SE) features plotted for the entire dataset (Fig. 3) consisting of alcoholic and control subjects indicate the apparent differences in spectral entropies for alcoholics and controls in some channels

  • The right occipital region of the brain is assigned the second highest ranking as indicated by the t test statistic. This result is very important clinically as it reflects the impact of alcohol on the visual ERP signal of alcoholic subject while performing a visual working memory task

Read more

Summary

Introduction

Alcoholism is a chronic disease that is addictive and progressive in nature. A lot of studies have shown the ill effects of alcoholism on various organs of the body, especially on the brain [1,2,3,4,5,6]. Prefrontal dysfunction in alcoholics is well understood by a lot of studies [7]. Alcohol consumption releases dopamine into nucleus accumbens and prefrontal cortex which is hypothesized to reinforce drinking habit [8]. One of the simplest and cost-effective tools to study the real-time effects of alcoholism is the EEG recorded on the scalp of human brain. While recording the EEG with an internal or external

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.