Abstract

Abstract Introduction The interpretation of brain tumors and abscesses MR spectra is complex and subjective. In clinical practice, different experimental conditions such as field strength or echo time (TE) reveal different metabolite information. Our study aims to show in which scenarios magnetic resonance spectroscopy can differentiate among brain tumors, normal tissue and abscesses using classification algorithms. Methods Pairwise classification between abscesses, brain tumor classes, and healthy subjects tissue spectra was performed, also the multiclass classification between meningiomas, grade I-II-III gliomas, and glioblastomas and metastases, in 1.5T short TE (n = 195), 1.5T long TE (n = 231) and 3.0T long TE (n = 59) point resolved spectroscopy setups, using LCModel metabolite concentration as input to classifiers. Results Areas under the curve of the Receiver Operating Characteristic above 0.9 were obtained for the classification between abscesses and all classes except glioblastomas, reaching 0.947 when classifying against metastases, grade I-II gliomas and glioblastomas (0.980), meningiomas and glioblastomas (0.956), grade I-II gliomas and metastases (0.989), meningiomas and metastases (0.990), and between healthy tissue and all other classes in both conditions except for anaplastic astrocytomas in short TE 1.5T setup. When the multiclass classification agrees with radiological diagnosis the accuracy reaches 96.8% for short TE and 98.9% for long TE. Conclusions The results in the three conditions were similar, highlighting comparable quality, robust quantification and good regularization and flexibility in either algorithm. Multiclass classification provides useful information to the radiologist. These findings show the potential of the development of decision support systems as well as tools for the accompaniment of treatments.

Highlights

  • The interpretation of brain tumors and abscesses MR spectra is complex and subjective

  • The highest area under the curve (AUC) averaged over resampling repetitions returned for each task are shown in Table 2, in common characters accompanied by the respective learning algorithm denoted as a digit whereas the lowest averages observed are represented in superscript analogously

  • A lower result was found in the discrimination between healthy subjects tissue and grade III gliomas in short TE data, achieving an AUC of 0.801 in short TE 1.5 T spectra

Read more

Summary

Introduction

The interpretation of brain tumors and abscesses MR spectra is complex and subjective. Our study aims to show in which scenarios magnetic resonance spectroscopy can differentiate among brain tumors, normal tissue and abscesses using classification algorithms. Methods: Pairwise classification between abscesses, brain tumor classes, and healthy subjects tissue spectra was performed, the multiclass classification between meningiomas, grade I-II-III gliomas, and glioblastomas and metastases, in 1.5T short TE (n = 195), 1.5T long TE (n = 231) and 3.0T long TE (n = 59) point resolved spectroscopy setups, using LCModel metabolite concentration as input to classifiers. As a non-invasive technique, MRS becomes attractive for the study of the brain, diagnosis and follows up of various diseases (Gujar et al, 2005) It is useful in the diagnosis of brain tumors, allowing the inference of the.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.