Abstract
Today, there are more and more time series data that coexist with other data. These data exist in useful and understandable patterns. Data management of time series data must take into account an integrated approach. However, many researches face numeric data attributes. Therefore, the need for time series data mining tool has become extremely important. The purpose of this paper is to provide a novel pattern in mining architecture with mixed attributes that uses a systematic approach in the financial database information mining. Time series pattern mining (TSPM) architecture combines the extended visualization-induced self-organizing map algorithm and the extended Naive Bayesian algorithm. This mining architecture can simulate human intelligence and discover patterns automatically. The TSPM approach also demonstrates good returns in pattern research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.