Abstract

We clarify the mathematical equivalence between low-dimensional singular value decomposition and low-order tensor principal component analysis for two- and three-dimensional images. Furthermore, we show that the two- and three-dimensional discrete cosine transforms are, respectively, acceptable approximations to two- and three-dimensional singular value decomposition and classical principal component analysis. Moreover, for the practical computation in two-dimensional singular value decomposition, we introduce the marginal eigenvector method, which was proposed for image compression. For three-dimensional singular value decomposition, we also show an iterative algorithm. To evaluate the performances of the marginal eigenvector method and two-dimensional discrete cosine transform for dimension reduction, we compute recognition rates for six datasets of two-dimensional image patterns. To evaluate the performances of the iterative algorithm and three-dimensional discrete cosine transform for dimension reduction, we compute recognition rates for datasets of gait patterns and human organs. For two- and three-dimensional images, the two- and three-dimensional discrete cosine transforms give almost the same recognition rates as the marginal eigenvector method and iterative algorithm, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call