Abstract

An increasing number of road traffic accidents (RTA) in Korea has emerged as being harmful both for the economy and for safety. An accurately estimated classification model for several severity types of RTA as a function of related factors provides crucial information for the prevention of potential accidents. Here, three data-mining techniques (neural network, logistic regression, decision tree) are used to select a set of influential factors and to build up classification models for accident severity. The three approaches are then compared in terms of classification accuracy. The finding is that accuracy does not differ significantly for each model and that the protective device is the most important factor in the accident severity variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.