Abstract

Communication is an essential component of human nature. It connects humans, allowing them to learn, grow, col-laborate, and resolve conflicts. Several aspects of human society, relationships, and growth would be significantly hampered in the absence of efficient communication. Hand gesture recognition is a way to interact with technology that can be particularly useful for individuals with disabilities. This hand gesture recognition is mainly employed in sign language translation, healthcare, rehabilitation, prosthesis, and Human-Computer Interaction (HCI). The high degree of dexterity is a main challenge for prosthetic limbs. In order to meet this challenge, hand gesture recognition is employed for the prosthetic limb, which can be used for rehabilitation. The objective of this article is to show the methodology for the recognition of hand gestures using Electromyography (EMG) signals. This article uses the pro-posed time domain feature extraction method called Absolute Fluctuation Analysis (AFA) along with the Root Mean Square (RMS) for the feature extraction method. Along with these feature extraction methods, repeated stratified K-fold cross validation is used for the validation of the classifiers such as the XGB classifier, the K-Nearest Neighbour (KNN) classifier, the Decision Tree classifier, the Random Forest classifier, and the SVM classifier, whose mean recognition accuracy is given by 93.26%, 87.42%, 85.26%, 92.23%, and 91.78%, respectively. The recognition accuracy of machine learning classifiers is being compared with state-of-the-art networks such as artificial neural net-works (ANN), long short-term memory (LSTM), bidirectional LSTM, gated recurrent units (GRU), and convolution-al neural networks (CNN), which provide recognition accuracy of 96.65%, 99.16%, 99.94%, and 99.99%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call