Abstract

Pattern recognition is considered as a mapping from the set of all inputs to the numbers 0 to 1. The inputs are treated as vectors. A topological group algebra over the vector space is described. The input is treated as avariable in a polynomial of that group algebra. A correspondence between inputs and numbers is established. This correspondence is used to prove that the polynomials in the algebra can represent a solution to any pattern recognition problem. When the coefficients of the polynomial are suitably chosen vectors, the natural topology of the input vector space is preserved. The importance of this approach as a basis for a completely general efficient parallel process, and practically realizable pattern recognizing machine is presented. The concept may be realized by a modular parallel process type of machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.