Abstract

For structural joints subject to dynamic loading, the fatigue strength is controlled by local stresses. For steel plate structures joined with fasteners, fatigue is governed by local friction and slip near the fasteners. As a working hypothesis for this study, a “weakest link” approach has been adopted. An optimum fastener pattern is attained by reducing the shear load in the most severely loaded fastener in the group. In this study, a typical eccentric multi-fastener bracket-to-beam joint was studied using constrained geometric optimization. Alternate assumptions concerning the distribution of the direct shear force between fasteners in a group were assessed. An analytical expression for non-uniform direct shear force resulted in an optimized fastener pattern with approximately 20% lower von Mises equivalent strain. The comparative finite element method based topology optimization analysis resulted in a contour, which was in close agreement with the fastener pattern attained analytically by exploiting geometry optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.