Abstract

Stimulating electrodes were placed in the red nucleus, lateral hypothalamus and medial thalamus in order to determine whether pyramidal tract (PT) neurons send collaterals to those sites. The red nucleus projections are well-known, but it was discovered that PT neurons also project into the other two sites. All of the fibers that sent collaterals to all three sites originated from fast PT neurons. Those that responded to stimulation of the skin and that sent collaterals to two or three sites were predominantly fast PT neurons. Those neurons that responded only to cerebral peduncle stimulation were predominantly slowly-conducting, when compared with the set of PT neurons in response to cerebral peduncle stimulation. The patterns of collateral branching to red nucleus and to lateral hypothalamus were similar, suggesting a similar synaptic effect of the pyramidal system in the two sites. Measurement of the speed of conduction from three sites along the length of corticospinal fibers revealed large changes on some, but not all, fibers; there was no evident pattern to these changes that might be associated with collateral branching. A new hypothesis concerning the functional role of fast PT neurons in regulating movement is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.