Abstract

The pattern of neuronal loss in the rat hippocampus following 10-min-long cardiac arrest-induced global ischemia was analyzed using the unbiased, dissector morphometric technique and hierarchical sampling. On the third day after ischemia, the pyramidal layer of sector CA1 demonstrated significant (27%) neuronal loss (P<0.05). At this time, no neuronal loss was observed in other cornu Ammonis sectors or the granular layer of the dentate gyrus. On the 14th postischemic day, further neuronal loss in the sector CA1 pyramidal layer was noticed. At this time, this sector contained 31% fewer pyramidal neurons than on the third day (P<0.05) and 58% fewer than in the control group (P<0.01). On the 14th day, neuronal loss in other hippocampal subdivisions also was observed. The pyramidal layer of sector CA3 contained 36% fewer neurons than in the control group (P<0.05), whereas the granular layer of the dentate gyrus contained 40% fewer (P<0.05). The total number of pyramidal neurons in sector CA2 remained unchanged. After the 14th day, no significant alterations in the total number of neurons were observed in any subdivision of the hippocampus until the 12th month of observation. Unbiased morphometric analysis emphasizes the exceptional susceptibility of sector CA1 pyramidal neurons to hypoxia/ischemia but also demonstrates significant neuronal loss in sector CA3 and the dentate granular layer, previously considered 'relatively resistant'. The different timing of neuronal dropout in sectors CA1 and CA3 and the dentate gyrus may implicate the existence of region-related properties, which determine earlier or later reactions to ischemia. However, the hippocampus has a unique, unidirectional system of intrinsic connections, whereby the majority of dentate granular neuron projections target the sector CA3 pyramidal neurons, which in turn project mostly to sector CA1. As a result, the early neuronal dropout in sector CA1 may result in retrograde transynaptic degeneration of neurons in other areas. The lack of neuronal loss in sector CA2 can be explained by the resistance of this sector to ischemia/hypoxia and the fact that this sector is not included in the major chain of intrahippocampal connections and hence is not affected by retrograde changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call