Abstract

Oligomerization of G-protein-coupled receptors (GPCRs) is emerging as a mechanism for regulation and functional modification, although it has been studied most extensively for Family A receptors. Family B receptors have clear structural differences from Family A. In this paper, we have systematically evaluated GPCRs that are capable of association with the prototypic Family B secretin receptor. All of the receptor constructs were shown to traffic normally to the plasma membrane. We utilized receptor bioluminescence resonance energy transfer (BRET) to determine the presence of constitutive and ligand-dependent receptor association. Extensive intra-family and no cross-family association was observed. Of the nine Family B receptors studied, all constitutively yielded a significant BRET signal with the secretin receptor, except for the calcitonin receptor. Each of the associating hetero-oligomeric receptor pairs generated a BRET signal of similar intensity, less than that of homo-oligomeric secretin receptors. BRET signals from some receptor pairs were reduced by ligand occupation, but none were increased by this treatment. Thus, Family B GPCR oligomerization occurs, with many structurally related members associating with each other. The specific functional implications of this need to be further evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call