Abstract

Shifting cultivation has resulted in large-scale deforestation and forest degradation in the tropics; however the abandoned fallows are known to have high potential for carbon capture. The paper is an attempt to determine the forest recovery patterns following shifting cultivation by evaluating the tree species composition, diversity and abundance with respect to topographical factors in Manipur, India. We also used ordination analysis to understand the change in species composition with regard to environmental variables. The living woody biomass carbon of each fallow was quantified, and the factors affecting the recovery of carbon stock along an increasing fallow gradient was assessed. Our results showed that the species richness and basal area recovered relatively with time since abandonment, and the north-facing lower elevation fallow sites displayed higher species richness and stem density than those in higher elevations. Environmental variables had no impact on the regeneration of Elaeocarpus floribundus Blume and Castanopsis hystrix Hook. f. & Thomson ex A. DC. which suggests that they may be capable of effective restoration of degraded forest areas. As these species appear naturally in the forests, it would facilitate quicker rehabilitation and reinstate the soil nutrients making the soil reusable in a short term. We also found that fallow age plays a vital role in recovering above-ground biomass carbon from living woody species followed by the aspect of the site. The total living woody biomass carbon ranged from 0.98 Mg ha-1 in 5 years fallow to 142.58 Mg ha-1 in 20 years fallow. The above-ground biomass carbon recovery of the oldest fallow was 39% to 40% of the reference undisturbed forest and the estimated time for the shifting cultivation fallows to reach that of the undisturbed forest level was approximately 39 years to 41 years.

Highlights

  • Shifting cultivation is a major land use in tropics despite the fact that it is blamed to be a major cause of forest loss

  • The basal area is considered as an essential predictor of ecological succession, and as reported from similar aged fallows in tropical moist forest, the present study showed a positive association between basal area and fallow age [38, 39]

  • Our result showed a positive relationship between the fallow period and the total living woody biomass carbon which is in accord with other works related to recovery following shifting cultivation in the tropical forests and neotropical secondary forests [54,55,56]

Read more

Summary

Introduction

Shifting cultivation is a major land use in tropics despite the fact that it is blamed to be a major cause of forest loss. Serious concerns are raised that this practice though the oldest form of agriculture may negatively affect biodiversity, carbon stocks and greenhouse gas emissions [1,2,3]. This practice provides subsistence livelihoods to millions of people worldwide [1]. Forest recovery and carbon stock following shifting cultivation

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.