Abstract
Dependent pattern matching is an intuitive way to write programs and proofs in dependently typed languages. It is reminiscent of both pattern matching in functional languages and case analysis in on-paper mathematics. However, in general it is incompatible with new type theories such as homotopy type theory (HoTT). As a consequence, proofs in such theories are typically harder to write and to understand. The source of this incompatibility is the reliance of dependent pattern matching on the so-called K axiom - also known as the uniqueness of identity proofs - which is inadmissible in HoTT. The Agda language supports an experimental criterion to detect definitions by pattern matching that make use of the K axiom, but so far it lacked a formal correctness proof. In this paper, we propose a new criterion for dependent pattern matching without K, and prove it correct by a translation to eliminators in the style of Goguen et al. (2006). Our criterion both allows more good definitions than existing proposals, and solves a previously undetected problem in the criterion offered by Agda. It has been implemented in Agda and is the first to be supported by a formal proof. Thus it brings the benefits of dependent pattern matching to contexts where we cannot assume K, such as HoTT. It also points the way to new forms of dependent pattern matching, for example on higher inductive types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.