Abstract

An accurate detection of abnormal lung nodule detection is very important for effective treatment and surgical procedure to remove the nodules. This paper introduces an efficient deep learning model to classify lung cancer in both left and right lung. It consists of three important stages; preprocessing, lung region detection and abnormal lung nodule detection. Further, a detailed discussion about the performance of the system is given using two benchmark databases; 30 lung CT images taken from the ELCAP dataset and 130 lung CT images taken from the LIDC dataset. An algorithmic framework is first created for the purpose of segmenting left and right lung region by a morphological algorithm after removing the noise by a wiener filter. A well defined deep learning architecture is designed for effective classification or detection of abnormal lung nodule detection by semantic classification. The proposed system is validated on LIDC and ELCAP database and provides an average accuracy of 97.86%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.