Abstract

Multibeam interference represents an approach for producing one-, two-, and three-dimensional periodic optical-intensity distributions with submicrometer features and periodicities. Accordingly, interference lithography (IL) has been used in a wide variety of applications, typically requiring additional lithographic steps to modify the periodic interference pattern and create integrated functional elements. In the present work, pattern-integrated interference lithography (PIIL) is introduced. PIIL is the integration of superposed pattern imaging with IL. Then a pattern-integrated interference exposure system (PIIES) is presented that implements PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. The purpose of this system is to fabricate, in a single-exposure step, a two-dimensional periodic photonic-crystal lattice with nonperiodic functional elements integrated into the periodic pattern. The design of the basic system is presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane where the three beams simultaneously interfere and integrate a superposed image of the projected mask pattern. Appropriate performance metrics are defined in order to quantify the characteristics of the resulting photonic-crystal structure. These intensity and lattice-vector metrics differ markedly from the metrics used to evaluate traditional photolithographic imaging systems. Simulation and experimental results are presented that demonstrate the fabrication of example photonic-crystal structures in a single-exposure step. Example well-defined photonic-crystal structures exhibiting favorable intensity and lattice-vector metrics demonstrate the potential of PIIL for fabricating dense integrated optical circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.