Abstract

We study the Rayleigh–Bénard convection in a 2D rectangular domain with no‐slip boundary conditions for the velocity. The main mathematical challenge is due to the no‐slip boundary conditions, because the separation of variables for the linear eigenvalue problem, which works in the free‐slip case, is no longer possible. It is well known that as the Rayleigh number crosses a critical threshold Rc, the system bifurcates to an attractor, which is an (m − 1)‐dimensional sphere, where m is the number of eigenvalues, which cross zero as R crosses Rc. The main objective of this article is to derive a full classification of the structure of this bifurcated attractor when m = 2. More precisely, we rigorously prove that when m = 2, the bifurcated attractor is homeomorphic to a one‐dimensional circle consisting of exactly four or eight steady states and their connecting heteroclinic orbits. In addition, we show that the mixed modes can be stable steady states for small Prandtl numbers. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.