Abstract

Smooth muscle cells (SMCs) are organized in various patterns in blood vessels. Whereas straight blood vessels mainly contain circumferentially aligned SMCs, curved blood vessels are composed of axially aligned SMCs in regions with vortex blood flow. The vortex flow-dependent feature of SMC alignment suggests a role for nonuniform fluid shear stress in regulating the pattern formation of SMCs. Here, we demonstrate that, in experimental models with vascular polymer implants designed for the observation of neointima formation and SMC migration under defined fluid shear stress, nonuniform shear stress possibly plays a role in regulating the direction of SMC migration and alignment in the neointima of the vascular implant. It was found that fluid shear stress inhibited cell growth, and the presence of nonuniform shear stress influenced the distribution of total cell density and induced the formation of cell density gradients, which in turn directed SMC migration and alignment. In contrast, uniform fluid shear stress in a control model influenced neither the distribution of total cell density nor the direction of SMC migration and alignment. In both the uniform and nonuniform shear models, the gradient of total cell density was consistent with the alignment of SMCs. These observations suggest that nonuniform shear stress may regulate the pattern formation of SMCs, possibly via mediating the gradient of cell density in the neointima of vascular polymer implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.