Abstract
In fish retinas, cone photoreceptor cells are arranged in two-dimensional regular patterns, called cone mosaics. In the zebrafish retina, four subtypes of cone cells, which are maximally sensitive to different wavelengths of light, appear in quasi-periodic patterns. The pattern formation mechanism is unknown. Here, I develop a mathematical model to examine whether cell adhesion can explain the formation of the zebrafish mosaic. I assume that the movement of differentiated cells is responsible for generating the pattern, and that the movement rate is modified by cell adhesion. The pattern is formed if the magnitudes of cell adhesion between cell types are chosen appropriately. I determine the conditions of cell adhesion for generating the pattern. I also compare this cell rearrangement model with a previously studied model in which the pattern is formed by transitions of cell fate. The condition for obtaining the focal pattern is looser in the cell rearrangement model than in the fate transition model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Theoretical Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.