Abstract

A two-dimensional mathematical model for dynamics of endothelial cells in angiogenesis is investigated. Angiogenesis is a morphogenic process in which new blood vessels emerge from an existing vascular network. Recently a one-dimensional discrete dynamical model has been proposed to reproduce elongation, bifurcation, and cell motility such as cell-mixing during angiogenesis on the assumption of a simple two-body interaction between endothelial cells. The present model is its two-dimensional extension, where endothelial cells are represented as the ellipses with the two-body interactions: repulsive interaction due to excluded volume effect, attractive interaction through pseudopodia and rotation by contact. We show that the oblateness of ellipses and the magnitude of contact rotation significantly affect the shape of created vascular patterns and elongation of branches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call