Abstract
The Landau-Lifshitz-Gilbert-Slonczewski equation describes magnetization dynamics in the presence of an applied field and a spin polarized current. In the case of axial symmetry and with focus on one space dimension, we investigate the emergence of space-time patterns in the form of wavetrains and coherent structures, whose local wavenumber varies in space. A major part of this study concerns existence and stability of wavetrains and of front- and domain wall-type coherent structures whose profiles asymptote to wavetrains or the constant up-/down-magnetizations. For certain polarization the Slonczewski term can be removed which allows for a more complete charaterization, including soliton-type solutions. Decisive for the solution structure is the polarization parameter as well as size of anisotropy compared with the difference of field intensity and current intensity normalized by the damping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.