Abstract

We investigate pattern formation in a fractional reaction–diffusion system. By the method of computer simulation of the model of excitable media with cubic nonlinearity we are able to show structure formation in the system with time and space fractional derivatives. We further compare the patterns obtained by computer simulation with those obtained by simulation of the similar system without fractional derivatives. As a result, we are able to show that nonlinearity plays the main role in structure formation and fractional derivative terms change the transient dynamics. So, when the order of time derivative increases and approaches the value of 1.5, the special structure formation switches to homogeneous oscillations. In the case of space fractional derivatives, the decrease of the order of these derivatives leads to more contrast dissipative structures. The variational principle is used to find the approximate solution of such fractional reaction–diffusion model. In addition, we provide a detailed analysis of the characteristic dissipative structures in the system under consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.