Abstract

Abstract Suppose that we have a repetitive and aperiodic tiling ${\textbf{T}}$ of ${\mathbb{R}}^n$ and two mass distributions $f_1$ and $f_2$ on ${\mathbb{R}}^n$, each pattern equivariant (PE) with respect to ${\textbf{T}}$. Under what circumstances is it possible to do a bounded transport from $f_1$ to $f_2$? When is it possible to do this transport in a strongly or weakly PE way? We reduce these questions to properties of the Čech cohomology of the hull of ${\textbf{T}}$, properties that in most common examples are already well understood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.