Abstract

In this paper, we study a diffusive predator–prey system with the nonmonotonic response function. The conditions on Hopf bifurcation and Turing instability of spatial systems are obtained. Near the Turing bifurcation point we apply the weakly nonlinear analysis to derive the amplitude equations of stationary pattern, to investigate the selection of spatiotemporal pattern. It shows that different types of patterns will occur in the model under various conditions. Numerical simulations agree well with our theoretical analysis when control parameters are in the Turing space. This study may provide some deep insights into the formation and selection of patterns for diffusive predator–prey systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.