Abstract

Reaction-diffusion systems show a fast and rather complex response on patterns produced by external space- and/or time-dependent perturbations. For example, one-component autocatalytic reactions rapidly find the loci where the given space-dependent reaction rates have relatively high values by following a kind of Darwinian strategy (combining self-reproduction and diffusion). It is shown that a simulation of this strategy in combination with annealing (decreasing the diffusion rates in time) may be used as an alternative to thermodynamic annealing strategies. Many-component reactions, such as the light-sensitive Belousov-Zhabotinsky reaction, show a more complex response to patterns impressed by illumination, for example. The response behavior and possible applications to dynamic information processing are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.