Abstract

In bioinformatics, complex cellular modeling and behavior simulation to identify significant molecular interactions is considered a relevant problem. Traditional methods model such complex systems using single and binary network. However, this model is inadequate to represent biological networks as different sets of interactions can simultaneously take place for different interaction constraints (such as transcription regulation and protein interaction). Furthermore, biological systems may exhibit varying interaction topologies even for the same interaction type under different developmental stages or stress conditions. Therefore, models which consider biological systems as solitary interactions are inaccurate as they fail to capture the complex behavior of cellular interactions within organisms. Identification and counting of recurrent motifs within a network is one of the fundamental problems in biological network analysis. Existing methods for motif counting on single network topologies are inadequate to capture patterns of molecular interactions that have significant changes in biological expression when identified across different organisms that are similar, or even time-varying networks within the same organism. That is, they fail to identify recurrent interactions as they consider a single snapshot of a network among a set of multiple networks. Therefore, we need methods geared towards studying multiple network topologies and the pattern conservation among them. Contributions: In this paper, we consider the problem of counting the number of instances of a user supplied motif topology in a given multilayer network. We model interactions among a set of entities (e.g., genes)describing various conditions or temporal variation as multilayer networks. Thus a separate network as each layer shows the connectivity of the nodes under a unique network state. Existing motif counting and identification methods are limited to single network topologies, and thus cannot be directly applied on multilayer networks. We apply our model and algorithm to study frequent patterns in cellular networks that are common in varying cellular states under different stress conditions, where the cellular network topology under each stress condition describes a unique network layer. We develop a methodology and corresponding algorithm based on the proposed model for motif counting in multilayer networks. We performed experiments on both real and synthetic datasets. We modeled the synthetic datasets under a wide spectrum of parameters, such as network size, density, motif frequency. Results on synthetic datasets demonstrate that our algorithm finds motif embeddings with very high accuracy compared to existing state-of-the-art methods such as G-tries, ESU (FANMODE)and mfinder. Furthermore, we observe that our method runs from several times to several orders of magnitude faster than existing methods. For experiments on real dataset, we consider Escherichia coli (E. coli)transcription regulatory network under different experimental conditions. We observe that the genes selected by our method conserves functional characteristics under various stress conditions with very low false discovery rates. Moreover, the method is scalable to real networks in terms of both network size and number of layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.