Abstract

As the wearable heater is increasingly popular due to its versatile applications, there is a growing need to improve the tensile stability of the wearable heater. However, maintaining the stability and precise control of heating in resistive heaters for wearable electronics remains challenging due to multiaxial dynamic deformation with human motion. Here, we propose a pattern study for a circuit control system without complex structure or deep learning of the liquid metal (LM)-based wearable heater. The LM direct ink writing (DIW) method was used to fabricate the wearable heaters in various designs. Through the study about the pattern, the significance of input power per unit area for steady average temperature with tension was proven, and the directionality of the pattern was shown to be a factor that makes feedback control difficult due to the difference in resistance change according to strain direction. For this issue, a wearable heater with the same minimal resistance change regardless of the tension direction was developed using Peano curves and sinuous pattern structure. Lastly, by attaching to a human body model, the wearable heater with the circuit control system shows stable heating (52.64°C, with a standard deviation of 0.91°C) in actual motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call