Abstract

Slow light has been proposed as a potential solution to all-optically tunable delay line. However, a slow-light element may degrade data quality in an optical communication system while decreasing group velocity of optical pulses. In this paper, pattern dependence of signal distortion is identified as a main reason for data degradation, which is caused by narrow-band amplitude and phase responses of the slow-light elements. We define figure of merit involving pulse delay and data degradation to optimize slow-light devices. It is shown that the pattern dependence can be reduced by detuning slow-light devices away from the signal carrier frequency, which allows using narrow-band slow-light techniques to increase normalized delay up to 0.8, with Q improvement of 2 dB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.