Abstract

This work focuses on capillary-induced collapse of high-aspect-ratio silicon nanopillars. Modification of the surface chemistry is demonstrated to be an efficient approach for reducing capillary forces and consequently reduce pattern collapse. Special effort is spent on determination of the wetting state of chemically modified surfaces as complete structure wetting is of utmost importance in wet processing. In light of this, an ATR-FTIR based method has been developed to unambiguously distinguish between wetting and non-wetting states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.