Abstract

PD(Partial discharges) are small electrical sparks that occur within the electric insulation of cables, transformers and windings on motors. PD analysis is a proactive diagnostic approach that uses PD measurements to evaluate the integrity of this equipment. Recently, several diagnostic algorithms for classifying the type of PD and locating the defect position have been developed. In this work, a new PD recognition system is proposed, which utilizes approximate coefficients of wavelet transform as a feature vector, furthermore, introduces bank of Elman networks to recognize the various PD phenomena. In order to verify the performance of the proposed scheme, it is applied to the simulated PD data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.