Abstract

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A $\textit{partial permutation of length n with k holes}$ is a sequence of symbols $\pi = \pi_1 \pi_2 \cdots \pi_n$ in which each of the symbols from the set $\{1,2,\ldots,n-k\}$ appears exactly once, while the remaining $k$ symbols of $\pi$ are "holes''. We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show that Baxter permutations of a given length $k$ correspond to a Wilf-type equivalence class with respect to partial permutations with $(k-2)$ holes. Lastly, we enumerate the partial permutations of length $n$ with $k$ holes avoiding a given pattern of length at most four, for each $n \geq k \geq 1$. Nous introduisons un concept de permutations partielles. $\textit{Une permutation partielle de longueur n avec k trous}$ est une suite finie de symboles $\pi = \pi_1 \pi_2 \cdots \pi_n$ dans laquelle chaque nombre de l'ensemble $\{1,2,\ldots,n-k\}$ apparaît précisément une fois, tandis que les $k$ autres symboles de $\pi$ sont des "trous''. Nous introduisons l'étude des permutations partielles à motifs exclus et nous montrons que la plupart des résultats sur l'équivalence de Wilf peuvent être généralisés aux permutations partielles avec un nombre arbitraire de trous. De plus, nous montrons que les permutations de Baxter d'une longueur donnée $k$ forment une classe d'équivalence du type Wilf par rapport aux permutations partielles avec $(k-2)$ trous. Enfin, nous présentons l'énumération des permutations partielles de longueur $n$ avec $k$ trous qui évitent un motif de longueur $\ell \leq 4$, pour chaque $n \geq k \geq 1$.

Highlights

  • Let A be a nonempty set, which we call an alphabet

  • Many of our arguments rely on a close relationship between partial permutations and partial 01-fillings of Ferrers diagrams

  • We show that k-Wilf equivalence yields a new characterization of Baxter permutations: a pattern p of length k + 2 is a Baxter permutation if and only if skn(p) =

Read more

Summary

Introduction

Let A be a nonempty set, which we call an alphabet. A word over A is a finite sequence of elements of A, and the length of the word is the number of elements in the sequence. The length of a partial word is the number of its symbols, including the holes. Let Snk denote the set of all partial permutations of the set [n − k] = {1, 2, . We extend the classical notion of pattern-avoiding permutations to the more general setting of partial permutations. Two patterns p and q are called Wilf-equivalent if for each n, the number of p-avoiding permutations in Sn is equal to the number of q-avoiding permutations in Sn. Let π ∈ Snk be a partial permutation and let i(1) < · · · < i(n − k) be the indices of the non-hole elements of π. Π = 32 154 avoids 1234, but π does not avoid 123: the permutation 325164 is an extension of π and it contains two occurrences of 123.

Our Results
Partial fillings
Strong -Wilf-equivalence of 312X and 231X
Short patterns
Directions of further research
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call