Abstract

.Purpose: Convolutional neural network (CNN) methods have been proposed to quantify lesions in medical imaging. Commonly, more than one imaging examination is available for a patient, but the serial information in these images often remains unused. CNN-based methods have the potential to extract valuable information from previously acquired imaging to better quantify lesions on current imaging of the same patient.Approach: A pretrained CNN can be updated with a patient’s previously acquired imaging: patient-specific fine-tuning (FT). In this work, we studied the improvement in performance of lesion quantification methods on magnetic resonance images after FT compared to a pretrained base CNN. We applied the method to two different approaches: the detection of liver metastases and the segmentation of brain white matter hyperintensities (WMH).Results: The patient-specific fine-tuned CNN has a better performance than the base CNN. For the liver metastases, the median true positive rate increases from 0.67 to 0.85. For the WMH segmentation, the mean Dice similarity coefficient increases from 0.82 to 0.87.Conclusions: We showed that patient-specific FT has the potential to improve the lesion quantification performance of general CNNs by exploiting a patient’s previously acquired imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.