Abstract

Recent advances in medical image-based computational modelling have made it possible for patient-specific analysis of blood flow and mass transport in the circulation. In this chapter, we describe mathematical models for (1) flow and transport of macromolecules in large arteries, and (2) flow and oxygen delivery in an arteriolar network. Detailed examples are given of mass transport in specific cases, including applications to atherosclerotic arteries and microvascular network. The first example shows transport of a large molecule, low-density lipoprotein, in a human right coronary artery with a mild stenosis, whilst the second is about a small dissolved molecule, oxygen, in an abdominal aortic aneurysm illustrating the effect of intraluminal thrombus. Finally, the additional effects of non-Newtonian properties of blood and haemoglobin-bound oxygen on oxygen transport in the retinal arteriolar network of normal and hypertensive subjects are described. Patient-specific geometries obtained by means of a variety of imaging techniques are used in these examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call