Abstract

BackgroundGenetic contributors to cardiac arrhythmias are often found in cardiovascular conduction pathways and ion channel proteins. Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disease of massive heterotopic ossification caused by a highly recurrent R206H mutation in ACVR1/ALK2. This mutation causes abnormal activation of the bone morphogenetic protein (BMP) pathway in response to Activin A. Prior studies suggested increased risks of cardiopulmonary complications in FOP. We examined participants in a Natural History Study (NHS) of FOP (ClinicalTrials.gov #NCT02322255) to better understand their cardiovascular status.MethodsThe NHS is an ongoing 3 year international multi-center longitudinal study of 114 patients (ages 4–56 years) with genetically confirmed ACVR1/ALK2R206H FOP. Patients were clinically assessed at baseline and 12 months. Electrocardiograms (ECGs) were reviewed in a central ECG laboratory. Conduction abnormalities were compared against clinical data collected in the NHS, and echocardiograms collected from NHS and non-NHS patients.ResultsConduction abnormalities were present in 45.3% of baseline ECGs, with the majority of abnormalities classified as nonspecific intraventricular conduction delay (37.7%). More specifically, 22.2% of patients > 18 years old had conduction abnormalities, which was significantly higher than a prior published study of a healthy population (5.9%; n = 3978) (p < 0.00001). Patients with FOP < 18 years old also had a high prevalence of conduction abnormalities (62.3%). The 12-month follow up data was similar to baseline results. Conduction abnormalities did not correlate with chest wall deformities, scoliosis, pulmonary function test results, or increased Cumulative Analog Joint Involvement Scale scores. Echocardiograms from 22 patients with FOP revealed 8 with structural cardiac abnormalities, only 1 of which correlated with a conduction abnormality.ConclusionsWe found that patients with FOP may have subclinical conduction abnormalities manifesting on ECG, independent of heterotopic ossification. Although clinically significant heart disease is not typically associated with FOP, and the clinical implications for cardiovascular risk remain unclear, knowledge about ECG and echocardiogram changes is important for clinical care and research trials in patients with FOP. Further studies on how ACVR1/ALK2R206H affects cardiac health will help elucidate the underlying mechanism.

Highlights

  • Cardiovascular complications and abnormalities are some of the most common contributors to overall morbidity and mortality, and major reasons why new pharmaceuticals are withdrawn from the market [1]

  • Conduction abnormalities were present in 45.3% of baseline ECGs, with the majority of abnormalities classified as nonspecific intraventricular conduction delay (37.7%)

  • We found that patients with Fibrodysplasia ossificans progressiva (FOP) may have subclinical conduction abnormalities manifesting on ECG, independent of heterotopic ossification

Read more

Summary

Introduction

Cardiovascular complications and abnormalities are some of the most common contributors to overall morbidity and mortality, and major reasons why new pharmaceuticals are withdrawn from the market [1]. Systematic natural history studies for rare genetic diseases that involve other genetic signaling pathways provide opportunities to identify potential novel contributors to cardiovascular risk using simple tests such as electrocardiograms (ECGs). FOP is most commonly caused by a highly recurrent R206H mutation that causes constitutive activation of ACVR1/ALK2, a bone morphogenetic pathway (BMP) type I receptor [3]. Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare disease of massive heterotopic ossification caused by a highly recurrent R206H mutation in ACVR1/ALK2. This mutation causes abnormal activation of the bone morphogenetic protein (BMP) pathway in response to Activin A. We examined participants in a Natural History Study (NHS) of FOP (ClinicalTrials.gov #NCT02322255) to better understand their cardiovascular status

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.