Abstract

Background: Establishment of heterotopic patient-derived xenografts of primary and relapsed non-muscular invasive bladder cancer (NMIBC) to explore the biological property of PD-L1 signaling that may impact bladder tumor growth in humanized animals. Methods: Tumor cells of luminal, basal, and p53 subtypes of primary and relapsed NMIBC were engrafted to irradiated (3.5 Gy) NOG/SCID female mice along with intraperitoneal transplantation of human lymphocytes (5 × 107 cells/mouse); a role of PD-L1 signaling pathway inhibition for bladder cancer growth was assessed in humanized animals that carried PD-L1-expressing main molecular subtypes of bladder carcinoma patient-derived xenografts (PDX) and provided with selective anti-PD-L1 treatment. We used two-tailed Student’s t test to explore differences between main and control subgroups. Significance of intergroup comparison was measured with one-way ANOVA followed by the Tukey’s or Newman–Keul’s criterion. Survival curves were analyzed with the Gehan’s criterion with the Yate’s correction. The Spearman’s correlation was used to assess the link between CD8+ expression and sPD-L1 serum level. Differences were considered statistically significant at p < 0.05. Results: Heterotopic primary and relapsed luminal, basal, and p53 subtypes of NMIBC PDXs were established. More than 25% of counted tumor cells of all PDX specimens expressed PD-L1, so the tumors were ranged as PD-L1 positive. Anti-PD-L1 intervention increased survival of the animals that carried both primary and relapsed luminal noninvasive, muscular invasive, and relapsed luminal bladder cancer xenografts. There was significant retardation of tumor volume duplication time in aforementioned subgroups correlated with PD-L1 expression. Bad response of p53 mutant subtypes of NMIBC on specific anti-PD-L1 treatment may be associated with low CD8+ cells representation into the tumors tissue. Conclusions: Established PD-L1-positive NMIBC PDXs differently replied on anti-PD-L1 treatment due to both NMIBC molecular subtype and tumor T-suppressors population. The results may have major implications for further clinical investigations.

Highlights

  • Recent investigations of bladder carcinoma have identified distinct molecular and genomic markers associated with the cancer progression, metastasis, and response to therapeutic manipulations.Several scientific teams have used whole genome expression profiling and wide panels of molecular markers to classify bladder cancer into basal, luminal, and p53 subtypes [1]

  • Survival Programmed death-ligand 1 (PD-L1) (Figure 1) as did all tumors excised from animals the lines of maternal tumors expressed ofSix control

  • In the control subgroup with luminal non-muscular invasive bladder cancer (NMIBC), animals began to perish from Day 38 after the tumor cells in patient-derived xenografts (PDX) of all Durvalumab-treated mice

Read more

Summary

Introduction

Several scientific teams have used whole genome expression profiling and wide panels of molecular markers to classify bladder cancer into basal, luminal, and p53 subtypes [1]. Establishment of heterotopic patient-derived xenografts of primary and relapsed non-muscular invasive bladder cancer (NMIBC) to explore the biological property of PD-L1 signaling that may impact bladder tumor growth in humanized animals. Methods: Tumor cells of luminal, basal, and p53 subtypes of primary and relapsed NMIBC were engrafted to irradiated (3.5 Gy) NOG/SCID female mice along with intraperitoneal transplantation of human lymphocytes (5 × 107 cells/mouse); a role of PD-L1 signaling pathway inhibition for bladder cancer growth was assessed in humanized animals that carried PD-L1-expressing main molecular subtypes of bladder carcinoma patient-derived xenografts (PDX) and provided with selective anti-PD-L1 treatment. Results: Heterotopic primary and relapsed luminal, basal, and p53 subtypes of NMIBC PDXs were established

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call