Abstract
The choice of injected dose of (18)F-FDG and acquisition time is important in obtaining consistently high-quality PET images. The aim of this study was to determine the optimal acquisition protocols based on patient weight for 3-dimensional lutetium oxyorthosilicate PET/CT. This study was a retrospective analysis of 76 patients ranging from 29 to 101 kg who were injected with 228-395.2 MBq of (18)F-FDG for PET imaging. The study population was divided into 4 weight-based groups: less than 45 kg (group 1), 45-59 kg (group 2), 60-74 kg (group 3), and 75 kg or more (group 4). We measured the true coincidence rate, random coincidence rate, noise-equivalent counting rate (NECR), and random fraction and evaluated image quality by the coefficient of variance (COV) in the largest liver slices. The true coincidence rate, random coincidence rate, and NECR significantly increased with increasing injected dose per kilogram (r = 0.91, 0.83, and 0.90; all P < 0.01). NECR maximized at 10.11 MB/kg in underweight patients. The true coincidence rate differed significantly among the 4 groups, except for group 3 versus group 4 (P < 0.01). The ratio of the true coincidence rate for group 2 to groups 3 and 4 was 1.4 and 1.6, respectively. The average random fraction for all 4 groups was approximately 35%. The COV of the 4 groups differed for all pairs (P < 0.01). The COVs in overweight patients were larger than those in underweight patients, and image quality in overweight patients was poor. We modified acquisition protocols for (18)F-FDG PET/CT according to the characteristics of a 3-dimensional lutetium orthosilicate PET scanner and PET image quality based on patient weight. The optimal acquisition time was approximately 1.4-1.6 times longer in overweight patients than in normal-weight patients. Estimation of optimal acquisition times using the true coincidence rate is more important than other variables in improving PET image quality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.