Abstract

The basic mechanism of patient-ventilator asynchrony is the mismatching between neural inspiratory and mechanical inspiratory time. Alterations in respiratory drive, timing, respiratory muscle pressure, and respiratory system mechanics influence the interaction between the patient and the ventilator. None of the currently available partial ventilatory support modes are exempt from problems with patient-ventilator asynchrony. Ventilator triggering design in the trigger phase and the set variables in the post-trigger phase contribute to patient-ventilator interaction. The set inspiratory flow rate in the post-trigger phase for assist-control volume cycled ventilation affects patient-ventilator asynchrony. Likewise, the initial pressure rise time, the pressure support level, and the flow-threshold for cycling off inspiration for pressure support ventilation are important factors affecting patient-ventilator asynchrony. Current investigations have advanced our understanding in this area; however, its prevalence and the extent to which patient-ventilator asynchrony affect the duration of mechanical ventilation remain unclear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.