Abstract

Quasi-static, pulmonary pressure-volume (P-V) curves were combined with a respiratory system model to analyze tidal pressure cycles, simulating mechanical ventilation of patients with acute respiratory distress syndrome (ARDS). Two important quantities including 1) tidal recruited volume and 2) tidal hyperinflated volume were analytically computed by integrating the distribution of alveolar elements over the affected pop-open pressure range. We analytically predicted the tidal recruited volume of four canine subjects and compared our results with similar experimental measurements on canine models for the validation. We then applied our mathematical model to the P-V data of ARDS populations in four stages of Early ARDS, Deep Knee, Advanced ARDS and Baby Lung to quantify the tidal recruited volume and tidal hyperinflated volume as an indicator of ventilator-induced lung injury (VILI). These quantitative predictions based on patient-specific P-V data suggest that the optimum parameters of mechanical ventilation including PEEP and Tidal Pressure (Volume) are largely varying among ARDS population and are primarily influenced by the degree in the severity of ARDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.