Abstract

The aim of the current study was to understand the importance of the joint alignment following triple arthrodesis by analysing the contact characteristics in a normal and arthritic ankle joint using a patient-specific numerical model developed using open source software. The alignment of the hindfoot with respect to tibia is calculated from CT scans and the ankle joint model was numerically analysed for neutral, valgus and varus positions in both normal and arthritic conditions. The contact area, the magnitude and distribution of the contact pressure on the articular surface of the talar dome was evaluated using a cell-centred Finite Volume Method implemented in open-source software OpenFOAM. It was found that all positions of the hindfoot predict higher lateral pressures during heel strike. The varus position predicts the maximum increase in lateral pressures. Comparing the valgus and neutral positions, although the neutral position predicts 9.1 % higher increase in lateral pressures during heel strike than valgus, it predicts 33.6 % decrease in pressures during heel-rise and the distribution is more medial during toe-off. In the case of arthritic ankle, it could be observed that the neutral and varus hindfoot fusion positions result in a concentrated increase of lateral pressures in heel strike and flat-foot. In the case of toe-off, the neutral alignment results in an increase of 62.3 % in the contact pressures compared to the arthritic pressure of the unfused foot and is 20.8 % higher than the valgus alignment. The study helps to conclude that the fusion is more beneficial at the neutral position of the hindfoot for the patient specific ankle. However, the 5° valgus position of hindfoot alignment could be more beneficial in the arthritic ankle. Patient-specific approach to the placement of the hindfoot with the help of numerical analysis could help address the issue of ankle degradation following arthrodesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.