Abstract
Little is known about in vivo menisci loads and displacements in the knee during strenuous activities. A new method that combines high-speed kinematics measured with biplane dynamic Roentgen stereogrammetric analysis (DRSA) and a subject-specific finite element (FE) model for studying in vivo meniscal behavior is presented here. Further model calibration in a very controlled uniaxial low and high-rate compression loading condition is presented by comparing the model behavior against the measured high-accuracy menisci DRSA kinematics and direct tibio-femoral pressure measurement from a K-scan sensor. It is apparent that certain model aspects such as removing of the pressure sensor from the model can result in relatively large errors (14%) in contact parameters that are not reflected in the change of the measured meniscal kinematics. Changing mesh size to 1 mm by 1 mm elements increased the magnitude of all but one of the contact variables by up to 45%. This local validation using accurate localized patient-specific geometry and meniscal kinematics was needed to enhance model fidelity at the level of contact between menisci and cartilage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.