Abstract

Left ventricular outflow tract obstruction is observed in 70% of patients with hypertrophic cardiomyopathy, which occurs in about 1 of every 500 adults in the general population. It has been widely believed that the motion of the mitral valve, in particular, its systolic anterior motion (SAM), attributes significantly to such obstruction. For a better understanding of the mitral valve motion, a 3D patient-specific fluid-structure interaction model of the left ventricle from a patient with hypertrophic obstructive cardiomyopathy based on computed tomography (CT) scan images was proposed in this study. Displacement, structural stress, pressure, flow velocity and shear stress within the left ventricle and mitral valve were extracted to characterize their behavior. The maximum shear stress on mitral valve was 9.68 . The pressure on its posterior leaflet was higher than that on the anterior leaflet and the peak pressure on the mitral valve was 93.5 mm Hg which occurred at pre-SAM time. High angles of attack (54.3 ± 22.4°) were found in this patient. The methodology established in this study may have the potential to clarify the mechanisms of SAM and ultimately optimize surgical planning by comparing the mechanical results obtained from preoperative and postoperative models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.